Print page

Propulsion

Propulsion usually refers to the engine technology which supplies the energy needed to get an aircraft from the end of a runway into the air and keep it there – and people usually think of the jet engine or a single or twin propeller engines seen on large and small passenger planes.

Propulsion systems for aircraft have undergone massive and rapid change since the early days of powered flight to achieve today’s very high-power density gas turbine engines which today power people and air-frames for thousands of miles at speeds around Mach 0.85 at 9 miles above sea level non-stop from London to Los Angeles.

There are also all kinds of aircraft engines in use today including the vertical thrust engines which allow the jump-jet Harrier to take off and land without any runway, and of course, spacecraft have relied on rockets to get into space – although the engineering ingenuity behind the new Virgin Galactic Spaceship have shown that there is always a new way of doing things!

Achieving high efficiency, low pollution and above all, safe engines requires the expertise and skill of many aerospace professionals, including (but not limited to):

·         aerodynamicists

·         materials specialists

·         acoustic experts

·         heat transfer engineers

·         stress analysts

These specialists work together, ‘trading off’ various competing technical issues to optimise the final design. Accomplishing this feat for a new engine for a commercial product requires thousands of person-years of effort, and investments of hundreds of millions of pounds.

Environmental Challenge

Aviation is increasingly being recognised as a small, but rapidly growing source of environmental pollutants, including noise. The aviation industry is investing huge amounts in research to reduce the environmental impact of its engines. In order to achieve greener aircraft further requires significant advances in propulsive design technology with a major influence on future projects and research. There will be many novel and exciting opportunities to join and address this challenge. For example, new fuel research into the potential of bio-fuels or hydrogen cells, new blade technology and materials, engine positioning and more. The balance also between fuel efficiency and noise reduction is also more difficult to achieve.

For the design, production and in-service support of propulsion systems all engineering, manufacturing and management disciplines are required in the but most importantly, the solutions of the future rely on new innovative thinkers who can develop the next generation of propulsive technology for the 21st Century and beyond. Will you follow in the footsteps of the UK innovator Whittle and transform aeroengine technology for the low-carbon economy of the future?

Our Latest Tweets

Thursday, November 15th, 2018 at 8:02pm
Day 2 of @WSUKLIVE and already off to a flying start with our #aerospace and #Aviation careers stand. Come and join us for a try on a flight simulator and impartial #careers advice https://t.co/lONeL37FCU
Thursday, November 15th, 2018 at 12:54am
Really busy today @worldskillsuk fantastic to see so many young people interested in #Aerospace and #Engineering - so much interest we had to organise another delivery of goodies for tomorrow! https://t.co/7BdThDYUDu
Wednesday, November 14th, 2018 at 6:07am
All set for @worldskillsuk 2018! Join us H20-E4 - we have our free flight aims, lots of freebies and #CareerFlightpath magazines to give away over the next few days! #STEM #aerospace #Aviation https://t.co/Lv8I49tW98

Our Latest News

Careers in Aerospace and Aviation LIVE 2017 3

Careers fairs are still an important networking opportunity if you are looking for your next career...

Read More
British Airways logo

Teachers: do you ever wonder what it’s like to work for an airline? Or even wonder what your...

Read More
Women in Aviation & Aerospace Charter Seminar September 2018

Aerospace and aviation organisations pledge to transform gender balance across the industry Since...

Read More