Print page

Propulsion

Propulsion usually refers to the engine technology which supplies the energy needed to get an aircraft from the end of a runway into the air and keep it there – and people usually think of the jet engine or a single or twin propeller engines seen on large and small passenger planes.

Propulsion systems for aircraft have undergone massive and rapid change since the early days of powered flight to achieve today’s very high-power density gas turbine engines which today power people and air-frames for thousands of miles at speeds around Mach 0.85 at 9 miles above sea level non-stop from London to Los Angeles.

There are also all kinds of aircraft engines in use today including the vertical thrust engines which allow the jump-jet Harrier to take off and land without any runway, and of course, spacecraft have relied on rockets to get into space – although the engineering ingenuity behind the new Virgin Galactic Spaceship have shown that there is always a new way of doing things!

Achieving high efficiency, low pollution and above all, safe engines requires the expertise and skill of many aerospace professionals, including (but not limited to):

·         aerodynamicists

·         materials specialists

·         acoustic experts

·         heat transfer engineers

·         stress analysts

These specialists work together, ‘trading off’ various competing technical issues to optimise the final design. Accomplishing this feat for a new engine for a commercial product requires thousands of person-years of effort, and investments of hundreds of millions of pounds.

Environmental Challenge

Aviation is increasingly being recognised as a small, but rapidly growing source of environmental pollutants, including noise. The aviation industry is investing huge amounts in research to reduce the environmental impact of its engines. In order to achieve greener aircraft further requires significant advances in propulsive design technology with a major influence on future projects and research. There will be many novel and exciting opportunities to join and address this challenge. For example, new fuel research into the potential of bio-fuels or hydrogen cells, new blade technology and materials, engine positioning and more. The balance also between fuel efficiency and noise reduction is also more difficult to achieve.

For the design, production and in-service support of propulsion systems all engineering, manufacturing and management disciplines are required in the but most importantly, the solutions of the future rely on new innovative thinkers who can develop the next generation of propulsive technology for the 21st Century and beyond. Will you follow in the footsteps of the UK innovator Whittle and transform aeroengine technology for the low-carbon economy of the future?

Our Latest Tweets

Friday, September 20th, 2019 at 2:58am
The 2019 Careers in Aerospace & Aviation LIVE will be one of our best yet! More exhibitors confirmed incl Cranfield Aerospace Solutions and @BrittenNorman With 500+ visitors already registered and only limited exhibitor spaces find out more at: https://t.co/NTebGUQ0Lr #CIAALIVE19 https://t.co/ceXwzAfPC7
Friday, September 20th, 2019 at 2:51am
Amazing news, fantastic to see greater visibility of general aviation! https://t.co/MSGPqD5jhZ

Our Latest News

Time and venue: Cranfield University on the 27th September 2019, 1030 hrs to 1430 hrs The Sandy Gunn...

Read More

Graduates   Will you be looking for a 2020 graduate scheme in a leading international industry...

Read More

Space School UK is celebrating its 30th anniversary in July 2019, coinciding with the 50th...

Read More

Upcoming Events

03/102019

About this Event Whether you’re a Pilot, Cabin Crew, Engineer or recently graduated,...

Read More
10/102019

New Scientist Live 2019 The world’s greatest science festival returns aiming to educate,...

Read More
Alta logo
16/102019

We are delighted to announce the second in the series of alta networking events following...

Read More